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This chapter motivates and introduces homogeneous coordinates for representing geo-
metric entities. Their name is derived from the homogeneity of the equations they induce.
Homogeneous coordinates represent geometric elements in a projective space, as inhomoge-
neous coordinates represent geometric entities in Euclidean space. Throughout this book,
we will use Cartesian coordinates: inhomogeneous in Euclidean spaces and homogeneous in
projective spaces. A short course in the plane demonstrates the usefulness of homogeneous
coordinates for constructions, transformations, estimation, and variance propagation. A
characteristic feature of projective geometry is the symmetry of relationships between
points and lines, called duality. In this chapter we aim at exploiting the algebraic prop-
erties of the representations of geometric entities and at giving geometrically intuitive
interpretations.

5.1 Homogeneous Vectors and Matrices

5.1.1 Definition and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1.2 A Short Course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.1.1 Definition and Notation

Definition 5.1.2: Homogeneous coordinates (J. Plücker 1829). Homogeneous co-
ordinates x of a geometric entity x are invariant with respect to multiplication by a scalar
λ �= 0: thus x and λx represent the same entity x . �

We will find homogeneous representations for geometric entities, such as points, lines
and planes, but also for transformations. The homogeneous representation is not unique,
as λ �= 0 can be chosen arbitrarily; x and −x represent the same entity. Uniqueness of the
entity is guaranteed as long as not all coordinates vanish, thus |x| �= 0.
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In certain applications it will be useful to restrict the freedom of scaling and to distin-
guish between opposite directions, e.g., when reasoning about the left or the right side of
an entity or when modelling a real camera: points always have to be located in front of
a camera, and this needs to be reflected in the modelling. This leads to oriented entities
whose representation is only invariant to the multiplication with a positive scalar.

It will occasionally be useful to reduce the ambiguity of the scaling and normalize ho-
mogeneous entities. We will distinguish between spherical normalization, which we denote
by the index s, e.g. xs where |xs| = 1, and similarly the Euclidean normalization xe where
some of the elements of xe can be interpreted as elements in Euclidean space.

Due to these representational properties, we need to clarify the usage of the equal sign
“=” in the context of homogeneous entities. It has three uses:

1. The equal sign is used to indicate equality, following the convention in mathematics.
2. The equal sign is used to indicate a value assignment as in some computer languages.

For example, l = x×y is read as the vector l is to be determined as the cross product
of x and y. This is sometimes written as l := x× y.

3. The equal sign is used to state that the representations on the left and the right-hand
sides refer to the same object. Thus the two representations are equal up to scaling.
The equation above l = x×y (a homogeneous relation), thus can be read as a condition
for the line parameters l to be equal to the parameters of the line connecting the points
x (x) and y(y). This sometimes is written as l ∼= x × y, or as λl = x × y with some
λ �= 0, making the scale factor explicit.

We will use the simple equal sign and only specify the relations 2 and 3 if the context
requires.

In contrast to inhomogeneous entities such as l, X, and R, homogeneous entities are
designated with upright letters, such as l, X, and P. Planes are designated with letters
from the beginning of the alphabet, lines with letters from the middle of the alphabet
and points with letters from the end of the alphabet. Points and lines in the plane will be
called 2D points and 2D lines, in contrast to 3D points and 3D lines in space.

We distinguish between names and representations of geometric entities. The symbol
X denotes the name of the point whereas its coordinates are denoted by X or X; thus, we
can write X (X) or X (X) depending on our assumptions about the representation of the
point X . The notations used are collected in Tables 5.1 and 5.2.

Table 5.1 Names of basic geometric entities in 2D and 3D

element 2D 3D

planes A , B , ...
lines l , m , ... L , M , ...
points x , y , ... X , Y , ...

Table 5.2 Notation for inhomogeneous and homogeneous vectors and matrices

2D 3D transformations

inhomogeneous x X R
homogeneous l, x A, L, X H

Homogeneous coordinates have a number of advantages which make them indispensable
in our context:

• They allow us to represent entities at infinity, which occurs frequently, e.g., when
dealing with vanishing points. Conceptually, homogeneous coordinates are the natural
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representation of elements of a projective space, by which we mean the corresponding
Euclidean space together with the elements at infinity of all lines in that plane.

• Homogeneous coordinates allow us to easily represent straight line-preserving trans-
formations, thus not only translations, rotations or affine transformations but also
projective transformations, e.g., when representing the mapping from 3D object space
to 2D image space in a pinhole camera.

• They simplify concatenation and inversion of straight line-preserving transformations,
since all transformations are represented as a matrix vector product.

• They simplify the construction of geometric elements from given ones as well as the
expression of geometric constraints as sets of homogeneous equations.

• All geometric operations, constructions, and transformations are bilinear forms. As a
consequence, the uncertainty of vectors and matrices using covariance matrices can
easily be propagated, as the necessary Jacobians are derived without effort.

We will first introduce the basic ideas in a short course, motivating the content of the
chapter, and then discuss the individual concepts in detail.

5.1.2 A Short Course

This subsection is meant to give an intuitive introduction to the use of homogeneous
coordinates in 2D space and to exemplify their advantages for points and lines and their
relations and transformations.

5.1.2.1 Representation with Homogeneous Coordinates

The Hessian normal form of a straight line l in the xy-plane is given by Hessian normal form

x cosφ+ y sinφ− d = 0 , (5.1)

see Fig. 5.1. Whereas the point x is represented with its inhomogeneous coordinates x =
[x, y]T, thus x (x, y), the line l is represented with the Hessian coordinates h = [φ, d]T,
namely the direction φ of its normal in mathematically positive, i.e., counterclockwise,
direction counted from the x-axis, and its distance d from the origin O,1 thus l (φ, d).

x

φ

.
d

x

y

n

O

x l

Fig. 5.1 Straight line with parameters of Hessian normal form. The normal direction n of the line points
to the left w.r.t. the direction (or orientation, cf. Sect. 9.1.1.3, p. 346) of the line

Equation (5.1) may be written in different forms and allows different interpretations:

• The equation represents the incidence of the point x (x) with the line l (h). This
symmetric incidence relation ι(x , l ) is equivalent to the dual relations: “The point x
lies on the line l ” and “The line l passes through the point x ”.

• The equation may be written as

1 We assume the distance is measured in the direction of the normal.
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nTx = d with n =

[
nx

ny

]
=

[
cosφ
sinφ

]
(5.2)

if we use the normal vector n. It suggests the line is to be represented by three param-
eters, [nx, ny, d]

T. However, they satisfy one constraint, namely |n| = 1. The represen-
tation with n does not have a singularity when estimating the direction n, unlike the
angle representation of the direction with φ (see the discussion on using quaternions
for representing rotations, Sect. 8.1.5.2, p. 335). This has significant advantages.

• The equation may be written as

xeTle = 0 with xe =

⎡
⎣x
y
1

⎤
⎦ le =

⎡
⎣ cosφ
sinφ
−d

⎤
⎦ . (5.3)

This suggests that both the point and the line are to be represented with 3-vectors,
thus x (xe) and l (le). They are homogeneous vectors, as multiplying them with an
arbitrary scalar �= 0 does not change the incidence relation. But they are normalized
in a well-defined way, namely such that the inhomogeneous parameters (x, y) and d
can be directly inferred. We will discuss normalization below.
Moreover, the equation is symmetric in x and l as xTl = lTx = 0, which algebraically
reflects the symmetry of the incidence property ι(x , l ).

• The equation may more generally be written as

xTl = 0 (5.4)

with the vectors

x =

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ u
v
w

⎤
⎦ = w

⎡
⎣x
y
1

⎤
⎦ , (5.5)

l =

⎡
⎣ l1
l2
l3

⎤
⎦ =

⎡
⎣a
b
c

⎤
⎦ = ±

√
a2 + b2

⎡
⎣ cosφ
sinφ
−d

⎤
⎦ . (5.6)

The factors w �= 0 and |[l1, l2]| =
√
a2 + b2 �= 0 can be chosen arbitrarily. Therefore,

points and lines can be represented by nearly arbitrary 3-vectors, namely by restricting
the absolute value of w = x3 and the absolute value of [a, b]T = [l1, l2]

T not to be zero.
As the relation (5.4) is a homogeneous equation, the corresponding representations of
the points are homogeneous, and the 3-vectors x and l are called the homogeneoushomogeneous

coordinates coordinates of the point x and the line l respectively.
We can easily determine the Euclidean representation of the point and the line from

x =
u

w
y =

v

w
, φ = atan2 (b, a) d = − c√

a2 + b2
(5.7)

or

x =

[
x1

x2

]

x3
, φ = atan2 (l2, l1) d = − l3∣∣∣∣

[
l1
l2

]∣∣∣∣
. (5.8)

5.1.2.2 Normalizations

Homogeneous coordinates of a point or a line are not unique. Uniqueness may be achieved
by normalization, i.e., by fixing the scale factor. Two types of normalizations are common,
Euclidean and spherical.
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Euclidean Normalization. By Euclidean normalization the vector is transformed such
that the Euclidean properties become visible (Fig. 5.2). We obtain

xe = Ne(x) =
1

w

⎡
⎣ u
v
w

⎤
⎦ =

[
x
1

]
, le = Ne(l) =

1√
a2 + b2

⎡
⎣a
b
c

⎤
⎦ =

[
n
−d

]
. (5.9)

Therefore, following Brand (1966), we introduce the following notation for points and lines
to specify the Euclidean part and the homogeneous part of a homogeneous vector. The
Euclidean part, indexed by 0, implicitly contains the Euclidean properties: for points the
two coordinates, and for lines the distance to the origin,

x =

[
x0

xh

]
, l =

[
lh
l0

]
. (5.10)

Euclidean normalization then reads as

xe =
x

xh
, le =

l

|lh| . (5.11)

Spherical Normalization. By spherical normalization all coordinates of a homoge-
neous vector are processed the same way and the complete vector is normalized to 1 (Fig.
5.3). The spherically normalized homogeneous coordinates of a 2D point x and of a 2D
line l are

xs = N(x) =
1√

u2 + v2 + w2

⎡
⎣ u
v
w

⎤
⎦ , ls = N(l) =

1√
a2 + b2 + c2

⎡
⎣a
b
c

⎤
⎦ . (5.12)

Thus the spherically normalized homogeneous coordinates of all 2D points and 2D lines
build the unit sphere S2 in IR3.

We will frequently use spherically normalized homogeneous vectors. They have several
advantages:

1. They lie on a sphere, which is a closed manifold without any borders. Thus geometri-
cally, i.e., if we do not refer to a special coordinate system, there are no special points
in the projective plane.

2. The redundancy in the representation – we use three coordinates for a 3D entity –
requires care in iterative estimation procedures, as the length constraint needs to be
introduced. Iteratively correcting spherically normalized vectors can be realized in the
tangent space which for 2D points is a tangent plane at the spherically normalized
vector.

3. As the points xs and the point −xs represent the same 2D point, the representation
is not unique. Taking these two points as two different ones leads to the concept of
oriented projective geometry, which among other things can distinguish between lines
with different orientation (Chap. 9, p. 343).

5.1.2.3 Geometric Interpretation of Homogeneous Coordinates and the
Projective Plane

The last two paragraphs suggest an intuitive and important geometric interpretation of
homogeneous coordinates as embedding the real plane IR2 with origin O2 and axes x and y
into the 3D Euclidean space IR3 with origin O3 and axes u, v and w, cf. Fig. 5.2, left. The
Euclidean normalized coordinate vector xe = [u, v, w]T = [x, y, 1]T lies in the plane w = 1. Euclideanly

normalized vectorThe origin O2 has coordinates xO2
= [0, 0, 1]T. The u- and the v-axes are parallel to the

x- and the y-axes respectively. Thus, adding the third coordinate, 1, to an inhomogeneous
coordinate vector x to obtain xe can be interpreted as embedding the real Euclidean plane
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Fig. 5.2 Representation with homogeneous coordinates, Euclidean normalization. Left: 2D point. The
real plane IR2 is embedded into the 3D space IR3 with coordinates u, v and w. Any vector x on the
line joining the origin O3 of the (uvw)-coordinate system and the point x , except the origin itself, can
represent the point x on the Euclidean plane IR2. The intersection of the line x O3 with the plane w = 1

yields the Euclideanly normalized homogeneous coordinate vector xe of x . Right: 2D line. The real plane
IR2 is embedded into the 3D space IR3. Coordinates a, b and c are used to represent 2D lines. The 2D
line l is represented by the normal l of the plane passing through the origin O3 and the line. When the
Euclideanly homogeneous coordinates le (5.9), p. 199 are used, their first two elements are normalized to
1, and the vector le lies on the unit cylinder (distance sO3 = 1) parallel to the w-axis. The distance of the
line l from the origin O2, which is in the direction of the normal nl, is identical to the c-component of le

IR2 into IR3. Points with coordinates x = λxe are on a straight line through the origin O3.
They represent the same point, namely x . You can also say: the straight line xO3, taking
x , which is embedded in the 3D (uvw)-space, represents the homogeneous point x .

A similar geometric interpretation can be given for lines. Here, we embed the real plane
IR2 into IR3, but with an (a, b, c)-coordinate system at O3.

The vector le := [a, b, c]T = [cosφ, sinφ,−d]T lies on the vertical cylinder a2 + b2 = 1
with unit radius, see Fig. 5.2, right. The vector le is the normal of the plane through O3

and l , as xTle = 0 for all points on l . The coordinate d of this vector is equal to the
distance of the line l from the origin O2, as can be proven geometrically by investigating
the coplanar triangles (O2, zl,O3) and (s , le,O3).Exercise 5.13

The spherically normalized homogeneous coordinates can be geometrically interpreted
in a similar way.spherically

normalized vectors The point xs lies on the unit sphere S2 in the three-dimensional (uvw)-space IR3, see
Fig. 5.3, left. Obviously, the negative vector −xs, also representing the point x , lies on
the unit sphere. All points on the unit sphere S2, except those on the equator u2+v2 = 1,
represent points of IR2.

The points on the equator have a well-defined meaning: when a point x moves away
from the origin O2 towards infinity, its spherically normalized homogeneous vector moves
towards the equator. Thus, points on the equator of S2 represent points x∞ at infinity.
They are represented by homogeneous coordinate vectors with w = 0, independently ofpoint at infinity
their normalization.

If we take the union of all points in the Euclidean plane IR2 and all points at infinity,
we obtain what is called the projective plane IP2. Both can be represented by the unitprojective plane
sphere, with opposite points identified.

The point ls also lies on the unit sphere in the three-dimensional (abc)-space IR3, see
Fig. 5.3, right. It is the unit normal of the plane through O3 and the line l . This plane
intersects the unit sphere in a great circle.

The relation between this circle and the normal ls is called polarity on the sphere: thepolarity on the
sphere point ls is what is called the pole of the circle; the circle is the polar of the point ls.

If a line moves towards infinity, its homogeneous vector moves towards the c-axis. There-
fore, the origin O2 or its antipode represent the line l∞ at infinity. Since lines are dual to
points, cf. below, this unit sphere S2 represents the dual projective plane.

This visualization of the projective plane is helpful for understanding certain construc-
tions and will be used throughout.
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Fig. 5.3 Spherical normalization. Left: 2D point. The spherically normalized point xs lies on the upper
hemisphere of the unit sphere S2. The antipode −xs also represents the point x . Points on the equator
u2 + v2 = 1 represent points at infinity. Right: 2D line l lying in IR2. The spherically normalized
homogeneous vector ls is the unit normal of the plane through O3 and l . When seeing the plane (O3l )
from ls, the origin O3 is on the left side of the line l . Therefore, the antipode point −ls represents the
same line, however, with opposite direction

5.1.2.4 Line Joining Two Points, Intersection of Two Lines, and Elements at
Infinity

Now, let us determine the line
l = x ∧ y (5.13)

joining two points x and y . The symbol ∧ (read: wedge) indicates the join. If the two
points are given with their homogeneous coordinates, thus x (x) and y(y), the joining line
is given by

l = x ∧ y : l = x× y = S(x)y , (5.14)

as then the vector l is perpendicular to x and y, thus xTl = 0 and yTl = 0; thus, the Exercise 5.1
line passes through both points. Matrix S(x) is the skew symmetric matrix induced by the
3-vector x,

S(x) =

⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ . (5.15)

A first remark on notation: The symbol for the join of two geometric entities is not
unique in the literature. The wedge sign “∧′′ often is used for the cross product in physics.
This is the reason for using it here for the join of two points, as the homogeneous coor-
dinates of the resulting line is obtained by the cross product. Observe: some authors use
the sign ∨ for the join of two points.

We will overload the symbol in two ways: (1) We will use it also for the join of geometric overloading of ∧ and
∩entities in 3D, namely 3D points and 3D lines. (2) We will also use it for the corresponding

algebraic entities. Thus we could have written in (5.14) the expression l = x ∧ y, keeping
in mind how the operation is performed algebraically. Applying the wedge to two 3-vectors
therefore is identical to determining their cross product, independently of what the two
vectors represent.

A similar reasoning leads to the homogeneous coordinates of the intersection point,

x = l ∩ m : x = l×m = S(l)m , (5.16)

of two lines l (l) and m(m) given with homogeneous coordinates, where the sign ∩ (read:
cap) indicates the intersection.

A second remark on notation: It would be more consistent to use the sign ∨ for the
intersection. We found that in longer expressions it is difficult to distinguish visually
between the ∧-symbol and the ∨-symbol. Therefore, we intentionally use the sign ∩ for
the intersection, which corresponds to the sign for the intersection of sets. This appears
intuitive, as the intersection point is the set-intersection of the two lines, taken as the set



202 5 Homogeneous Representations of Points, Lines and Planes

of infinitely many points. Again we will overload the symbol both for 3D entities, namely
3D lines and planes, and for algebraic entities.
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x
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x
l

Fig. 5.4 Intersection x = l ∩ m (left) and join l = x ∧ y (centre) of two geometric entities. The
intersection of two parallel lines (right) leads to the point at infinity x∞. The figure indicates this point
to be the result of two different limiting processes. Given the direction [u, v]T of the line, we may end up
with x∞ = limw↓0 [u, v, w]T = [u, v, 0]T. But due to homogeneity, we also have −x∞ = limw↑0 [u, v, w]T =

lim−w↓0 [−u,−v,−w]T = [−u,−v, 0]T, the vector pointing in the opposite direction. In Sect. 9, p. 343,
oriented projective geometry, we will distinguish between these two directions

If all vectors are spherically normalized, we arrive at a very intuitive interpretation
of the construction equations, see Fig. 5.5. 2D points correspond to and are represented
as points on the unit sphere, whereas 2D lines correspond to great circles on the unit
sphere and are represented as unit normals, thus also as points on the unit sphere. The
two constructions read as

ls = N(xs × ys) and xs = N(ls ×ms), (5.17)

which can be derived geometrically from the two graphs in Fig. 5.5.
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Fig. 5.5 Join of two points and intersection of two lines on the projective planes IP2 and its dual plane
IP∗2 superimposed on the same unit sphere (for the definition of IP∗2 cf. (5.38), p. 209). Left: The 2D line
l joining any two 2D points xs,ys on the projective plane is the great circle through these points. The
normal ls of the plane containing the great circle is determined by the normalized cross product of the two
homogeneous coordinate vectors. Right: The 2D intersection point of any two 2D lines on the projective
plane is the intersection of the two great circles defined by their normals ls and ms. The direction of the
intersection point xs is the normalized cross product of the two normals of the planes containing the two
great circles. If the intersection xs lies on the equator, its last coordinate is zero, indicating the point is
at infinity; thus, the two lines are parallel. Observe, the cross products are unique, a property which we
will exploit when discussing oriented elements

Two parallel lines do not intersect in a point in the real plane but at infinity, which
cannot be represented with inhomogeneous coordinates. However, the cross product of
their homogeneous coordinates exists. This allows us to explicitly represent points at
infinity.

Let the two lines, see Fig. 5.4, right, have the common normal n and two different
distances d1 and d2 from the origin, with
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n⊥ =

[
0 −1
1 0

]
n (5.18)

perpendicular to the normal n of the lines. Then the homogeneous coordinates of their
intersection point x∞ are obtained from Exercise 5.14

x∞ =

[
n
−d1

]
×

[
n
−d2

]
=

[
(d2 − d1)n

⊥

0

]
∼=

[
n⊥

0

]
. (5.19)

Thus, the first two components [u, v]T of the 3-vector of a point at infinity, point at infinity

x∞ : x∞ =

⎡
⎣u
v
0

⎤
⎦ , (5.20)

represent the direction towards the point at infinity, whereas the third component is zero.
Two points, x∞([ux, vx, 0]

T) and y∞([uy, vy, 0]
T), at infinity span what is called the line

at infinity, Exercise 5.2
line at infinity

l∞ : l∞ =

⎡
⎣ 0
0
1

⎤
⎦ , (5.21)

as the cross product yields [0, 0, uxvy − uyvx]
T, which is proportional to [0, 0, 1]T. Any

other point at infinity lies on the line at infinity.
All points with x ∈ IR3 \ 0, assuming proportional vectors represent the same point,

are elements of the projective plane IP2.2 Reasoning with such projective elements is at projective plane
the heart of projective geometry.

All lines with l ∈ IR3 \ 0 are elements of the corresponding dual projective plane. This dual projective plane
corresponds to the notion of a vector space for points and its dual for its linear forms. We
will exploit the concept of duality between points and lines and generalize it to both 3D
points and the corresponding transformations.

Observe, the coordinates of the line l = x ∧ y are not the same as the coordinates
of the line l = y ∧ x , but are their negatives, as the cross product is anti-symmetric.
This allows us to distinguish between lines with different directions if we follow certain
sign conventions. For example, if we assume points to be represented with positive third
component, we can distinguish between the sign of the lines x ∧ y and y ∧ x , as their
normals differ by 180◦. If we consistently consider the sign conventions, we arrive at the
oriented projective geometry, which is the topic of Chap. 9. oriented

projective geometryThe 2D coordinate system can be described by its origin x0 and its axes lx and ly, with
coordinates identical to unit 3-vectors e[3]i ,

x0 =

⎡
⎣ 0
0
1

⎤
⎦ = e

[3]
3 , lx =

⎡
⎣ 0
1
0

⎤
⎦ = e

[3]
2 , ly =

⎡
⎣ 1
0
0

⎤
⎦ = e

[3]
1 . (5.22)

Note that the x-axis seen as a line lx has the Euclidean normal [0, 1]T and passes through
the origin, therefore lx = e2, not lx = e1. We will discuss the elements of coordinate
systems in detail in Sect. 5.9.

5.1.2.5 Duality of Points and Lines

Each geometric element, operation, and relation has what is called a dual, indicated by (.).
The concept of duality results from the underlying three-dimensional vector space IR3 for

2 Mathematically, this is the quotient space IP2 = (IR3 \0)/(IR \0), indicating that all vectors x ∈ IR3 \0
are taken as equivalent if they are multiplied with some λ ∈ IR \ 0.
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representing points, with the dual vector space IR∗3, which contains all linear forms lTx,
represented by the vector l. As the two spaces are isomorphic, there is a natural mapping
D : IR3 
→ IR∗3, namely the identity mapping x 
→ l.

Given the point x = [u, v, w]T, the line l which is dual to this point has the same
coordinates as the point

l = x =

⎡
⎣ u
v
w

⎤
⎦ (5.23)

and vice versa.
Therefore, a given 3-vector [r, s, t]T can be interpreted as either a 2D point x = [r, s, t]T

or a 2D line l = [r, s, t]T; they are dual to each other.
The point X and the dual line l are positioned on opposite sides of the origin O, with

distances dxO and dlO to the origin multiplying to 1, thus dxO dlO = 1 (Table 7.3, p. 298).
The line through X and perpendicular to the line l passes through the origin, see Fig. 5.6.
We will see that this property transfers to 3D.

x

-  /r
-  /s

y
r

s
x

l=x
. 1

1
_

Fig. 5.6 Duality of points and lines in the plane. Point x and line l are dual w.r.t. each other. They
have the same homogeneous coordinates [r, s, t = 1]T: x (x = [r, s]T) and l (rx + sy + 1 = 0), from which
the intersection points [−1/r, 0] and [0,−1/s] with the axis can be derived

For spherically normalized homogeneous coordinates, we see from Fig. 5.3 that a point
xs and its dual line ls = xs are related by polarity on the sphere, cf. Sect. 5.1.2.3, p. 200.
For more on duality cf. Sect. 5.6, p. 229.

5.1.2.6 Transformation of Points

Linear mappings of homogeneous coordinates can be used to represent classical transfor-
mations. For example, we have the translation T and the rotation R ,

x ′ = T (x ) : x′ = Tx with T([tx, ty]T) =

⎡
⎣ 1 0 tx
0 1 ty
0 0 1

⎤
⎦ (5.24)

and

x ′ = R (x ) : x′ = Rx with R(α) =

⎡
⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤
⎦ , (5.25)

which can easily be verified. Observe, the two 3×3matrices are homogeneous entities: theirhomogeneous matrix
multiplication with a scalar μ �= 0 does not change the transformation, as the resulting
vector is multiplied with μ �= 0, leaving the resulting point unchanged.

Concatenation and inversion are obviously easy, since the geometric transformations
are represented as matrix vector products.matrix

representation
for point

Observe, the join of two points in (5.14) is also a matrix vector multiplication, suggesting
that the skew matrix S(x) is a matrix representation of the point. We will generalize this
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property for all basic geometric entities and transformations and derive a representation
with homogeneous vectors and matrices.

We will see that a general linear mapping of homogeneous coordinates is straight line-
preserving.

5.1.2.7 Variance Propagation and Estimation

All relations discussed so far are bilinear in the elements of the coordinates involved.
Therefore, we may easily derive the Jacobians needed for variance propagation.

For example, from

l = x× y = −y × x = S(x)y = −S(y)x (5.26)

we immediately obtain the two Jacobians

∂(x× y)

∂y
= S(x) and

∂(x× y)

∂x
= −S(y). (5.27)

The line coordinates are nonlinear functions of the point coordinates, namely sums of prod-
ucts. Following Sect. 2.7.6, p. 44, in a first approximation if the two points are stochastically
independent with covariance matrices Σxx and Σyy, we obtain the covariance matrix of
the joining line,

Σll = S(μx)ΣyyST(μx) + S(μy)ΣxxST(μy). (5.28)

Of course, we will need to discuss the meaning of the covariance matrix of a homogeneous
entity and the degree of approximation resulting from the homogeneity of the representa-
tion.

Finally, we will discuss estimation techniques for homogeneous entities: we may use the
homogeneity of the constraints to advantage to obtain approximate values. For example,
let us assume N points x n, n = 1, ..., N , are given and we want to determine a best fitting
straight line. Due to measurement deviations, the points and the unknown line will not
satisfy the constraints xT

nl = 0 but will result in some residual xT
nl = wn. Minimizing

the length of the vector w = [w1, ..., wn, ..., wN ]T, i.e., minimizing the sum of squared
residuals wTw =

∑N
n=1 w

2
n w.r.t. the line parameters under the constraint |l| = 1, leads

to minimizing the Rayleigh ratio

r =
lT

(∑N
n=1 xnx

T
n

)
l

lTl
→ min, (5.29)

which is known to be equivalent to solving an eigenvalue problem. As this method does not
take the possibly different uncertainties of the points into account, we also need to discuss
statistically optimal estimates. The special structure of the constraints will simplify the
setup of the corresponding estimation problem.

5.2 Homogeneous Representations of Points and Lines in 2D
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This section gives formal definitions of homogeneous coordinates of 2D points and 2D
lines. It completes the descriptions of the concepts given so far for 2D space: the 3-vectors
establishing the projective plane for points and the dual projective plane for lines. Both
contain points and lines at infinity.


