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Video collection

2x4 cameras

1024x768@30Hz





Video Data









Outline

• Feature Extraction and Description
• Matching, Tracking and Indexing
• Geometry
• Surface Reconstruction



The transformation hierarchy
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• Viewpoint Change •
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• Lighting Variation
• Scale Change



Invariance or Covariance
• Detection and image transformation 

commutes
Detect (Transform(I))=Transform(Detect(I))



Rotation-Invariant Detection

• Moravec
• Förstner
• Harris
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Feature Detection
Harris Corners
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Feature Detection
Harris Corners

Second Moment Matrix
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Feature Detection
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Feature Detection



Rotation+Scale Invariant Detection

• DoG Points
• Lindeberg, Schmid & Mohr, Lowe



DoG Points

• ‘Blob’ detector

Video In

Pyramid

Appropriate 
Pyramid Levels

-



Affine Invariant Regions

• Tuytelaars & Van Gool
• Mikolajczyk and Schmid
• Matas et al.



Harris and Hessian Affine

• Mikolajczyk and Schmid



MSER
• Matas et al.
• Similar to watershed, but thresholded at 

minimal change rather than segmented 
when watersheds join



MSER
• Extremal regions are ‘continuous-invariant’
• MSER’s are affine invariant if growth is 

measured in relative terms



Demonstration of live feature 
tracking and MSER’s



MSER
Video In

Region 
Resampler

Upright
Elliptical
Regions

Pyramid

Appropriate 
Pyramid Levels

Vertical 
Resampler

Elliptical 
Regions

Circular
regions

SIFT 
Descriptor

Gradient 
Orientation
Histogram

Oriented
Regions

Tracks of Affine Invariant Regions
and Corresponding Descriptors

Frame-to-Frame
Tracking



Selecting a coordinate system



Region Description

• Image Patch
• Normalized Image Patch
• SIFT Descriptor
• DCT Descriptors
• Wavelets



SIFT Descriptor



Structure
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Feature
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Matching



2D Tracking

HC

Harris

KLT



Normalized Correlation
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Only retain bidirectional matches
No loops because of symmetry d(a,b)=d(b,a)

Feature Matching/Tracking
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Feature Matching/Tracking



Feature Matching/Tracking



Feature Matching/Tracking



Feature Matching/Tracking



Matching vs Tracking

• Detection, while a tremendous strength in 
terms of scalability, is a weakness for 
repeatability



KLT Tracker Harris Tracker



GPU KLT

Image 1024 x 768

1000 features 
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work of Sudipta Sinha



GPU-KLT



Indexing

• Fighting the curse of dimensionality
• Locality Sensitive Hashing (LSH)
• K-d tree
• Vocabulary Tree

Find nearest neighbor



tf-idf

• Term Frequency Inverse Document Frequency
• Is a weighting of words in a document

(n/N) log (D/d)



Clustering

• K-Means
• K-Medioids
• Mean-Shift
• Spectral Clustering
• Graph-Cuts



K-means



Mean-Shift



Spectral-Clustering

Break into eigen-modes



−v
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Graph-Cuts



Machine Learning

• When parametric invariance is insufficient
• Supervised,Unsupervised,Semisupervised
• Support Vector Machines (SVM’s)
• Boosting
• Neural Nets



Scalability
If we can get repeatable, discriminative features, 

then recognition can scale to very large databases 
using the vocabulary tree and indexing approach 
described in Nistér & Stewénius CVPR 2006. 



Vocabulary Tree



Vocabulary Tree



Vocabulary Tree



Vocabulary Tree



Adding, Querying and Removing 
Images at full speed

Add Remove

Query



Training and Addition are Separate

Common Approach Our approach

















































Performance





Size Matters
Improves
Retrieval

Improves
Speed







Geometric Verification



Robust to Clutter and Occlusion
• Local Regions
• Like Web-search



• Demonstration of real-time camera tracking

Geometry





Visual Odometry
work with Oleg Naroditsky and Jim Bergen



Visual Odometry
work with Oleg Naroditsky and Jim Bergen

• 365 m without loss of tracking
• 350 m (~ 3.5 minutes) without GPS
• Error in distance traveled ~ 1%
• Accumulated error in position ~ 3-5%

– e.g. ~10m over ~350m

North

East



Visual Odometry
work with Oleg Naroditsky and Jim Bergen



Visual Odometry
work with Oleg Naroditsky and Jim Bergen



3D Tracker



•Large scale model produced purely 
from video (no GPS/INS)







•Large scale model 
produced purely 
from video (no 
GPS/INS)



Geo Registered Cameras
(With INS Data)



GPS Data Gathering
• Garmin GPS16

– $200 unit
– 1Hz updates

• Records
– Latitude-Longitude 
– Pseudo-range up to 12 

satellites
– Satellite’s clock



3D Tracking and Geo-registration



3D Tracking and Geo-registration



Lever arm calibration

lever arm from 
drawings

refined lever arm



Lever arm calibration





2D-2D
Relative Orientation

2D-3D
Pose

3D-3D 2D-2D
Absolute Orientation

Bundle Adjustment Robust StatisticsTriangulation

Geometry Tools



Bundle Adjustment
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Trust Region Methods
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Least squares with Gauss Newton 
Approximation
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Bundle Adjustment
)()( 2

1 xcdxxHc ∇−=
Block LU factorization:

Multiply by Multiply by 

⎥
⎦

⎤
⎢
⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

− −

−

−

−

SSSCSC

SSS

C

S

SCSSCSCC

SCSS

gHHg
gH

dx
dx

HHHH
HHI

1

1

1

1

0
SSH

CCH
SCH Sg

CSH Cg

⎥
⎦

⎤
⎢
⎣

⎡
− IH

I

CS

0
⎥
⎦

⎤
⎢
⎣

⎡ −

I
HSS

0
01

First order sparsity

Second order sparsity



Bundle Adjustment
)()( 2

1 xcdxxHc ∇−=
Block LU factorization:

Multiply by Multiply by 
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Bundle Adjustment

Domain

Range Bundle
Adjuster

Bundle Adjustment
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Bundle Adjustment



Bundle Adjustment
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Compute cost function

Compute derivatives

Outer product of track

Linear Solving

Back−substitution

Total

Real−time limit



3D Tracking

SBET Only Bundled



3D Reconstruction
Structure

and
Motion

Feature
Matching

Feature
Detection

Original 
Video

2D-2D
Relative Orientation

2D-3D
Pose

Bundle AdjustmentTriangulation

Hypothesis
Generator

Observation
Likelihood

?



Data Input

Estimate or
posterior likelihood
output

Probabilistic
Formulation

Hypothesis
Generator

Precise
Formulation



RANSAC- Random Sample Consensus

Least Squares

RANSAC

Robust



RANSAC- Random Sample Consensus

Line Hypotheses

Points

Robust



RANSAC

Hypothesis
Generator

Observation
Likelihood

Hypotheses

Observations

500

1000
500 x 1000 = 500.000

?



Hypotheses

Observations

500

1000
500 x ???? = ???????

Depth-first Preemption

Preemptive RANSAC



Hypotheses

Observations

500

1000
500 x 200 = 100.000

100

Breadth-first Preemption

Chunksize

Overhead ~100 microseconds

Preemptive RANSAC



Observed Tracks

Hypothesis Generation

Preemptive RANSAC



Preemptive RANSAC



Preemptive RANSAC



Relative Orientation



Calibrated vs Uncalibrated

tR,
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The Epipoles and the Epipolar Line Homography

h
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The Epipolar Constraint
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The Five Point Problem

What is R,t ?

Given five point correspondences,

E. Kruppa,
Zur Ermittlung eines Objektes aus zwei Perspektiven

mit Innerer Orientierung,
1913.



O. Faugeras and S. Maybank,
Motion from Point Matches: Multiplicity of Solutions,

1990.

J. Philip, 
A Non-Iterative Algorithm for Determining all

Essential Matrices Corresponding to Five Point Pairs, 
1996.

B. Triggs, 
Routines for Relative Pose of Two Calibrated Cameras from 5 Points, 

2000.

D. Nister,
An Efficient Solution to the Five-Point Relative Pose Problem,

2002.



The solution is minimal in two respects:

First solution suited for numerical 
implementation that corresponds directly
to the intrinsic degree of difficulty of the problem.

Closed form derivation of 10th degree 
polynomial.

It can operate on the smallest number
of points required to get a finite
number of solutions.



Nr of Roots

Average 4.55



Nr of Solutions

Average 2.74



[  0.067,  0.287 ] < > [0.329,1.297 ]
[  0.254, 0.0646] < > [0.523,1.0807]
[  0.239, -0.213 ] < > [0.517,0.645 ]
[-0.710,  -0.693] < > [-0.141,0.157]
[  0.661, -0.307] < > [ 0.950, 0.773]

10 Solutions
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The 5-point algorithm (Nistér PAMI 04)
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The 5-point algorithm (Nistér PAMI 04)
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Action Matrix

Eigen-Decomposition

The 5-point algorithm (Stewénius et al)



5-Point Matlab Executable

Recent Developments on Direct Relative Orientation,
Henrik Stewenius, Christopher Engels, David Nister, 
ISPRS Journal of Photogrammetry and Remote Sensing 

www.vis.uky.edu/~dnister





Noise

Minimal Cases, Sideways Motion Depth 0.5
Baseline 0.1
Field of View 45 degrees



Depth 0.5
Baseline 0.1
Field of View 45 degrees

50 points

Direction



Minimal Cases, Sideways Motion

Baseline

Depth 0.5
Baseline 0.1
Field of View 45 degrees



Easy Conditions Realistic Conditions

Correct Calibration



3.02.01.51.3

0.70.50.30.05

Focal Length Miscalibration



Planar Ambiguity, Uncalibrated

2Degrees of Freedom



Planar Ambiguity,
Calibrated

2-Fold or Unique



Depth



The 3 View 4 Point Problem







How Hard is this Problem?



Approximately This Hard



















Uncertainty in Epipolar Geometry

Single Estimate often
ill posed

Representation of
posterior likelihood
well posed, but 
computationally 
challenging

work with Chris Engels



Uncertainty in Epipolar Geometry

Single Estimate often
ill posed

Representation of
posterior likelihood
well posed, but 
computationally 
challenging

work with Chris Engels



Epipoloscope
work with Chris Engels



Epipoloscope

5 point8 point

work with Chris Engels



Hypothesis Generators

• Partially data-driven methods
– Five-point + epipole
– Three-point + epipole (uses intrinsic calibration)

• Fully data-driven methods:
– Eight-point 
– Seven-point
– Five-point (uses intrinsic calibration)



Results
• Likelihood image using different methods

Five-Point Seven-Point Eight-Point

Three-Point + epipole Five-Point + epipole



Results

• Convergence of the posterior



Results

• Estimation of Confidence Interval
– Confidence estimated by probability mass 

contained within certain interval

True epipole

Confidence
interval



Results

• Comparison of Confidence Intervals



Results

• Comparison of Confidence Intervals
– Fully Data-driven

Five-Point
0.935666

Seven-Point
0.395411

Eight-Point
0.277246



Results

• Comparison of Confidence Intervals
– Partially Data-driven

Three-Point + epipole
0.937596

Five-Point + epipole
0.407995



Results

• Baseline Selection
– Choose best pair of frames for pose, stereo, etc.



Triangulation



• 2 Stages: Correction & Ideal Triangulation

Triangulation

e’

x’

e

x

X



Triangulation

e’

x’

e

x

• Rays Intersect <-> Rays Coplanar



Triangulation

e’

x’

e

x

• One parameter family – Balance the error



• One parameter family – Balance the error

Triangulation

x x’

e e’



Triangulation

x x’

e e’

• One parameter family – Balance the error



• Max-Norm -> Quartic (Closed form, Nistér)
• Directional Error -> Quadratic (Oliensis)

• L2-Norm    -> Sextic (Hartley & Sturm)

Triangulation

• One parameter family – Balance the error



Optimal 3 View Triangulation
work with Henrik Stewenius and Fred Schaffalitzky

47 Stationary Points



Nr of Stationary Points for 
Triangulations in N Views

476
148 336 638

1081

2- 0.5N+ 3N + 4.5N 23



Sampson Approximation

( ) xCxxM xx
1−Τ=

Squared Mahalanobis Distance Covariance Propagation
Τ= JJCC xxJxJx

Combine

( ) ( ) fJJCffM xx
1−ΤΤ≈

xxC
f J are the incidence function and its Jacobianand

Where is the covariance matrix of detected image features and



Sampson Approximation
For two views this leads to

( ) ( )
( ) ( ) ( ) ( )222
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2
2

2
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2
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FxFxFxFx

FxxxxFM
ΤΤ

Τ

′+′++
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For three views, an approximation of the distance to trifocal 
incidence can be found by tensor contractions and Cramer’s rule
in <1 microsecond

Assuming Cauchy distribution

( )MD += 1ln



2D-3D Pose



The 3-Point Problem



The 3-Point Problem

























































































































































































































































































































































Seamlessly into the classical case



Moving Stereo Pair



Moving Stereo Pair



Moving Stereo Pair



6-point pose

[ ] 0=× PXx

21)1( aPPaP +−=
Linear, stack 5 point constraints, results in pencil of cameras:

XaPXPax 21)1( +−=
Projects world point onto image line

Correct point by perpendicular projection. 
Add constraint and solve uniquely



Absolute Orientation
‘Stitching’

B. Horn, 
Closed-Form Solution of Absolute 
Orientation using Unit Quaternions



Absolute Orientation
‘Stitching’



One camera overlap

Absolute Orientation
‘Stitching’

Projective: 4 points, Nistér 01
Calibrated: 1 point 



Geometry-Algebra ‘Dualism’
JJ =))I(V(• Hilbert’s Nullstellensatz

Algebraic Geometry



Hypothesis Generation

The Generalized 
3-Point Problem

The 3 View 4-Point 
Problem

8(4)

10

The 5-Point Relative 
Pose Problem

0 (or thousands)

2048

47
3 View 

Triangulation

Unknown Focal
Relative Pose

15

64
Generalized Relative 

Pose

Microphone-Speaker
Relative Orientation

8-38-150-344-??



RISC
Research Institute for Symbolic Computation

Linz, Austria

Wolfgang Gröbner (1899-1980) Bruno Buchberger



Suggested Literature
• D. Cox, J. Little, D. O’Shea, Ideals, Varieties, 
and Algorithms, Second Edition, 1996.

• D. Cox, J. Little, D. O’Shea, Using Algebraic 
Geometry, Springer 1998.

• T. Becker and Weispfennig, Gröbner Bases, A 
Computational Approach to commutative Algebra, 
Springer 1993.



Elimination 
Schedule

Approach
Pose Problem over R

Compute Gröbner basis

End

Compute Action Matrix

Solve Eigenproblem

Backsubstitute

Begin (online)

Pose Problem. Port to Zp

Compute number of solutions

End

Build matrix based 
Gröbner basis code

Port to R

Begin (offline)



6-point generalized relative orientation (64 solutions) (Stewenius, 
Nistér, Oskarsson and Åström, Omnivis 2005) 

6-point relative orientation with common but unknown focal length 
(15 solutions) (Stewenius, Nistér, Schaffalitzky and Kahl,
CVPR 2005)

Examples of Solved Problems



“Audio-Grammetry”
work with Henrik Stewenius, Jens Hannemann, Kevin Donahue



Microphone-Speaker Location
work with Henrik Stewenius, Jens Hannemann, Kevin Donahue





Sparse Dense



Structure
and

Motion
Camera Motion

Feature
Matching

Feature
Detection

Original 
Video

Model
Out

Surface
triangulation
and  texturing

Bayesian
framework
driven by
graph cuts

Plane regression

Delaunay triangulation

Window-based stereo
at multiple scales

Sparse Reconstruction

Dense Reconstruction

Median Fusion
of depth maps



Calibrated views

Depth maps

Fused Depth maps

Dense Reconstruction



Stereo
• Feature Based Stereo
• Classical Stereo
• Dynamic Programming
• Belief Propagation
• Graph Cuts
• Color Segmentation
• Plane Sweep
• Level Sets



[ ]
112 |,|minarg dwdwd

w
MAP EEw +=

Discontinuity Energy

Dissimilarity Energy



Multi-View Depth Reconstruction

Dynamic Programming Belief Propagation



Dynamic Programming

Depth

Image Scanline



Belief Propagation

Depth

Image ScanlinesImage
Columns
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Graph Cuts
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Graph Cuts



Multi-View Depth 
Reconstruction

•Plane-sweep stereo on GPU
work with Q. Yang, L. Wang, R. Yang



Middlebury Stereo Record

Color-weighted correlation

Real-time for small images and 

few disparity levels

Double-BP

Highly computationally demanding 

even for small images

work with Q. Yang, L. Wang, R. Yang



Depth Map Fusion
•Main lesson: simple stereo with many 
correlations on many images + fusion is 
the winning recipe

Simpler stereo on 

more data 

(higher number of correlations) 

Depth map fusion

Highly optimized, 

computationally demanding stereo



GPU Stereo
GPUCPU



CPU (Xeon 3GHz): 3.2s GPU (NVIDIA 7800 GTX): 70ms

CPU

83%

12%
5%

Warp & AD
Boxcar
Best cost

GPU

57%

18%

17%

8%

Warp & AD
Boxcar
Best cost
Read back

GPU Stereo



ICP



Alignment of Video onto 3D Point Clouds

Pose Estimation

Motion Stereo

ICP Alignment

work with Wen-Yi Zhao and Steve Hsu



Fusion

• Curless & Levoy
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- -
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-
-- - -

+

aP
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-
---



aP
iP

if

aP
iP

if
X X

Median Fusion



Depth

Stability = Occlusion-Passing



=View
β
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•Resolves inconsistencies. Cleans up 
results very efficiently

•Suited for GPU implementation 
(essentially consists of rendering back and 
forth many times)

Depth Map Fusion











Depth Map Fusion



Sparse Mesh Generation



Computation times 
CPU

0

0.5
1

1.5

2

2.5
3

3.5

4
4.5

radial track 2D track 3D geo stereo fusion total

seconds

Running the whole system with: 
1024x768 resolution for Radial, Tracker 2D, Tracker 3D, Geo registration
512x384 resolution for Stereo, Fusion, 3D model generation

Single CPU processing times for single video stream



Computation times 
CPU+GPU

Running the whole system with: 
1024x768 resolution for Radial, Tracker 2D, Tracker 3D, Geo registration
512x384 resolution for Stereo, Fusion, 3D model generation

Single CPU + GPU processing times for single video stream

seconds

0

0.05

0.1

0.15

0.2

0.25

0.3

radial track
2D

track
3D

geo stereo fusion total























Camera Geometry

• Often leads to polynomial formulations,
or can at least very often be formulated in
terms of polynomial equations



Polynomial Formulation

• p1(x) , … , pn(x)= A set of input polynomials 
(n polynomials in m variables)

x=[y1 … ym]



Algebraic Ideal
• I(p1 , … , pn)= The set of polynomials
generated by the input polynomials 
(through additions and multiplications by a polynomial)

p and q in I => p+q in I
p in I           => pq in I

The ideal I consists of ‘Almost’ all the polynomials implied
by the input polynomials
(More precisely, the radical        of the ideal consists of all)I



Remember Row Operations:

• Multiplying a row by a scalar
• Subtracting a row from another
• Swap rows

Add:
• Multiplying a row by any polynomial



Multiplying by a Scalar

p(x)

3.8p(x)

Transitions through zero remain



Adding

p1(x)
p2(x)

Common transitions through zero remain

p1(x) + p2(x)



Multiplying

p(x)

f(x)

Transitions through zero remain

p(x)f(x)



Basis (for Ideal)

• A basis for I is a set of polynomials 
(p1 , … , pn) such that I=I(p1 , … , pn)



Algebraic Variety

• The solution set
(the vanishing set of the input polynomials)

V(I)={x:I(x)=0} 

More precisely 
p(x)=0 for all p in I



Quotient Ring J/I
• The set of equivalence classes of 

polynomials when only the values on V are 
considered (i.e. polynomials are equivalent iff p(x)=q(x) for all 

x in V)

V(I) 
p in J/I 



Action Matrix

• For multiplication by polynomial on finite 
dimensional solution space

V(I) 



Action Matrix

Companion Matrix

Action Matrix



An ‘Equivalence’

Finding the Roots 
of a Polynomial

Finding the Eigenvalues
of a Matrix

Compute Companion
Matrix

Compute 
Characteristic Polynomial

Finding the Roots 
of Multiple 

Polynomial Equations

Finding the Eigenvalues
of a Matrix

Compute Action Matrix in Quotient Ring
(Polynomials modulo Input Equations)

Compute 
Characteristic Polynomial

Requires
Gröbner
Basis for
Input Equations



Companion Matrix

x2 1x3x4x5x6

a7x7+ a6x6 +a5x5+ a4x4+ a3x3+ a2x2+ a1x+a0



Action Matrix

I



Action Matrix

V(I) 

I



Action Matrix

V(I) 

I

p in J



Action Matrix

V(I) 

I

p in J

p in J/I



Action Matrix

I
p in J/I



Action Matrix

I
p in J/I

q in J/I



Action Matrix

I
p in J/I

q in J/I

pq in J/I



Action Matrix
Multiplication by a polynomial q is a linear 
operator Aq

(αp+βr)q=α(pq)+β(rq)

The matrix Aq is called the action matrix for 
multiplication by q



Action Matrix

Ib0 b1 b2

x0 x1 x2



Action Matrix

Ib0 b1 b2

x0 x1 x2

q in J



Action Matrix

I

q(x1)b1

q(x2)b2
q(x0)b0

q in J



Action Matrix

I

The values q(xi) of q at the solutions xi are the 

eigenvalues of the action matrix

q(x1)b1

q(x2)b2
q(x0)b0

q in J



Action Matrix
The values q(xi) of q at the solutions xi are the 
eigenvalues of the action matrix

If we choose q=y1 , the eigenvalues are the 
solutions for y1



Action Matrix

b’(x)Aq p=q(x)b’(x)p
for all p in J/I and x in V(I)

b’=[r1 … ro]

b’(x)Aq =b’(x)q(x) 
b(x) is a left nullvector of Aq corresponding to eigenvalue q(x)



Monomial Order

• Needed to define leading term of a polynomial
• Grevlex (Graded reverse lexicographical) order 

usually most efficient

y_1

y_2



Gröbner Basis
• A basis for ideal I that exposes the leading 

terms of I (hence unique well defined remainders)

• Easily gives the action matrix for 
multiplication with any polynomial in the 
quotient ring

y_1

y_2



A Reduced Gröbner Basis is a Basis 
in the normal sense

• A polynomial in the ideal I can be written as 
a unique combination of the polynomials in 
a reduced Gröbner basis for I

• The monic Gröbner basis for I is unique



Buchberger’s Algorithm

Gaussian 
Elimination

Buchberger’s Algorithm

Euclid’s
Algorithm for the 

GCD



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Buchberger’s Algorithm
Compute remainders of S-polynomials until 

all remainders are zero



Prime Field Formulation

• Reals => Cancellation unclear
• Rationals => Grows unwieldy
• Prime Field => Cancellation clear, size is 

limited, only small risk of incorrect 
cancellation if prime is large



Gaussian Elimination

• Expanding all polynomials up to a certain 
degree followed by Gaussian elimination 
allows pivoting



Unwanted Solutions

Can be removed by ideal quotients, or more generally saturation



Elimination Example



Elimination Example



Elimination Example



Elimination Example



Elimination Example



Elimination Example



Elimination Example



Elimination Example



Elimination Example



Elimination Example



Action Matrix





Stratified Self-Calibration

Introduction

Camera calibration and the search for infinity
Hartley, Hayman, de Agapito, Reid

Calibration with robust use of cheirality by quasi-affine 
reconstruction of the set of camera projection centres

Nister



Self-calibration

Flexible

Pre-calibration

Less problems with
critical surfaces
(when information used
correctly)



What is the cue in self-
calibration?



Cx,Cy

Skew angle

fx



fx/ fy





Distortion of the cameras
is the cue that drives self-
calibration



To move across the plane at infinity, a camera 
has to go through a ‘geometric wormhole’

This makes the camera very angry and upset,
in fact it will refuse



Quasi-affine transformations
and cheirality

A projective transformation is
quasi-affine with respect to a set
iff it preserves the convex hull of
the set

( )( ) ( )( )AConvexHullHAHConvexHull =
?



A projective transformation is affine iff
it is quasi-affine with respect to the set of all finite points

Quasi-Affine
∞p

Projective
∞p











Each camera pair poses a question regarding the metric baseline

?This           or           This



The question is easily answered by cheirality since a point in front 
of or behind both cameras supports the former case and a point on 
different sides supports the latter. 

A sequence of such binary decisions then deduces the convex
hull of the camera centres.



Using cheirality, the convex hull of the points and the
convex hull of the cameras can be respected
(But not necessarily the convex hull of the union)



Metric configuration





Cheirality (QUARC reconstruction)
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Metric configuration



The points are not essential, convergence occurs even from this projective equivalent
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