Benedikt Mersch

PhD Student
Contact:
Email: mersch@nulligg.uni-bonn.de
Tel: +49 – 228 – 73 – 27 11
Fax: +49 – 228 – 73 – 27 12
Office: Nussallee 15, 1. OG, room 1.012
Address:
University of Bonn
Photogrammetry, IGG
Nussallee 15
53115 Bonn

Profiles: Google Scholar | Github

Research Interests

  • SLAM
  • LiDAR Moving Object Segmentation
  • Behavior Estimation

Short CV

Benedikt Mersch is a Ph.D. student at the Photogrammetry & Robotics Lab at the University of Bonn since July 2020. He received his master’s degree in Electrical Engineering at the Hamburg University of Technology in December 2019.

Teaching

  • Techniques for Self-Driving Cars, 2023/2024
  • Techniques for Self-Driving Cars, 2022/2023
  • Techniques for Self-Driving Cars, 2021/2022
  • Mobile Sensing and Robotics Project, 2020/2021
  • Techniques for Self-Driving Cars, 2020/2021

Code releases

Publications

2024

  • T. Guadagnino, B. Mersch, I. Vizzo, S. Gupta, M. V. R. Malladi, L. Lobefaro, G. Doisy, and C. Stachniss, “Kinematic-ICP: Enhancing LiDAR Odometry with Kinematic Constraints for Wheeled Mobile Robots Moving on Planar Surfaces,” arXiv Preprint, vol. arXiv:2410.10277, 2024.
    [BibTeX] [PDF] [Code]
    @article{guadagnino2024arxiv,
    author = {Guadagnino, T. and Mersch, B. and Vizzo, I. and Gupta, S. and Malladi, M.V.R. and Lobefaro, L. and Doisy, G. and Stachniss, C.},
    title = {{Kinematic-ICP: Enhancing LiDAR Odometry with Kinematic Constraints for Wheeled Mobile Robots Moving on Planar Surfaces}},
    journal = arxiv,
    year = {2024},
    volume = {arXiv:2410.10277},
    url = {https://arxiv.org/pdf/2410.10277},
    codeurl = {https://github.com/PRBonn/kinematic-icp},
    }

  • H. Lim, S. Jang, B. Mersch, J. Behley, H. Myung, and C. Stachniss, “HeLiMOS: A Dataset for Moving Object Segmentation in 3D Point Clouds From Heterogeneous LiDAR Sensors,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2024.
    [BibTeX] [PDF]
    @inproceedings{lim2024iros,
    author = {H. Lim and S. Jang and B. Mersch and J. Behley and H. Myung and C. Stachniss},
    title = {{HeLiMOS: A Dataset for Moving Object Segmentation in 3D Point Clouds From Heterogeneous LiDAR Sensors}},
    booktitle = iros,
    year = 2024,
    }

  • L. Nunes, R. Marcuzzi, B. Mersch, J. Behley, and C. Stachniss, “Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2024.
    [BibTeX] [PDF] [Code] [Video]
    @inproceedings{nunes2024cvpr,
    author = {L. Nunes and R. Marcuzzi and B. Mersch and J. Behley and C. Stachniss},
    title = {{Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion}},
    booktitle = cvpr,
    year = 2024,
    codeurl = {https://github.com/PRBonn/LiDiff},
    videourl = {https://youtu.be/XWu8svlMKUo},
    }

  • I. Hroob, B. Mersch, C. Stachniss, and M. Hanheide, “Generalizable Stable Points Segmentation for 3D LiDAR Scan-to-Map Long-Term Localization,” IEEE Robotics and Automation Letters (RA-L), vol. 9, iss. 4, pp. 3546-3553, 2024. doi:10.1109/LRA.2024.3368236
    [BibTeX] [PDF] [Code] [Video]
    @article{hroob2024ral,
    author = {I. Hroob and B. Mersch and C. Stachniss and M. Hanheide},
    title = {{Generalizable Stable Points Segmentation for 3D LiDAR Scan-to-Map Long-Term Localization}},
    journal = ral,
    volume = {9},
    number = {4},
    pages = {3546-3553},
    year = 2024,
    doi = {10.1109/LRA.2024.3368236},
    videourl = {https://youtu.be/aRLStFQEXbc},
    codeurl = {https://github.com/ibrahimhroob/SPS},
    }

  • S. Gupta, T. Guadagnino, B. Mersch, I. Vizzo, and C. Stachniss, “Effectively Detecting Loop Closures using Point Cloud Density Maps,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2024.
    [BibTeX] [PDF] [Code] [Video]
    @inproceedings{gupta2024icra,
    author = {S. Gupta and T. Guadagnino and B. Mersch and I. Vizzo and C. Stachniss},
    title = {{Effectively Detecting Loop Closures using Point Cloud Density Maps}},
    booktitle = icra,
    year = 2024,
    codeurl = {https://github.com/PRBonn/MapClosures},
    videourl = {https://youtu.be/BpwR_aLXrNo},
    }

  • M. Zeller, V. S. Sandhu, B. Mersch, J. Behley, M. Heidingsfeld, and C. Stachniss, “Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds,” IEEE Transactions on Robotics (TRO), vol. 40, pp. 2357-2372, 2024. doi:10.1109/TRO.2023.3338972
    [BibTeX] [PDF] [Video]
    @article{zeller2024tro,
    author = {M. Zeller and Sandhu, V.S. and B. Mersch and J. Behley and M. Heidingsfeld and C. Stachniss},
    title = {{Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds}},
    journal = tro,
    year = {2024},
    volume = {40},
    doi = {10.1109/TRO.2023.3338972},
    pages = {2357-2372},
    videourl = {https://www.youtube.com/watch?v=v-iXbJEcqPM}
    }

2023

  • I. Vizzo, B. Mersch, L. Nunes, L. Wiesmann, T. Guadagnino, and C. Stachniss, “Toward Reproducible Version-Controlled Perception Platforms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition,” in Proc. of the Intl. Conf. on Intelligent Transportation Systems Workshops, 2023.
    [BibTeX] [PDF] [Code]
    @inproceedings{vizzo2023itcsws,
    author = {I. Vizzo and B. Mersch and L. Nunes and L. Wiesmann and T. Guadagnino and C. Stachniss},
    title = {{Toward Reproducible Version-Controlled Perception Platforms: Embracing Simplicity in Autonomous Vehicle Dataset Acquisition}},
    booktitle = {Proc. of the Intl. Conf. on Intelligent Transportation Systems Workshops},
    year = 2023,
    codeurl = {https://github.com/ipb-car/meta-workspace},
    note = {accepted}
    }

  • B. Mersch, T. Guadagnino, X. Chen, I. Vizzo, J. Behley, and C. Stachniss, “Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation,” IEEE Robotics and Automation Letters (RA-L), vol. 8, iss. 8, pp. 5180-5187, 2023. doi:10.1109/LRA.2023.3292583
    [BibTeX] [PDF] [Code] [Video]
    @article{mersch2023ral,
    author = {B. Mersch and T. Guadagnino and X. Chen and I. Vizzo and J. Behley and C. Stachniss},
    title = {{Building Volumetric Beliefs for Dynamic Environments Exploiting Map-Based Moving Object Segmentation}},
    journal = ral,
    volume = {8},
    number = {8},
    pages = {5180-5187},
    year = 2023,
    issn = {2377-3766},
    doi = {10.1109/LRA.2023.3292583},
    videourl = {https://youtu.be/aeXhvkwtDbI},
    codeurl = {https://github.com/PRBonn/MapMOS},
    }

  • H. Lim, L. Nunes, B. Mersch, X. Chen, J. Behley, H. Myung, and C. Stachniss, “ERASOR2: Instance-Aware Robust 3D Mapping of the Static World in Dynamic Scenes,” in Proc. of Robotics: Science and Systems (RSS), 2023.
    [BibTeX] [PDF]
    @inproceedings{lim2023rss,
    author = {H. Lim and L. Nunes and B. Mersch and X. Chen and J. Behley and H. Myung and C. Stachniss},
    title = {{ERASOR2: Instance-Aware Robust 3D Mapping of the Static World in Dynamic Scenes}},
    booktitle = rss,
    year = 2023,
    }

  • M. Zeller, V. S. Sandhu, B. Mersch, J. Behley, M. Heidingsfeld, and C. Stachniss, “Radar Velocity Transformer: Single-scan Moving Object Segmentation in Noisy Radar Point Clouds,” in Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2023.
    [BibTeX] [PDF] [Video]
    @inproceedings{zeller2023icra,
    author = {M. Zeller and V.S. Sandhu and B. Mersch and J. Behley and M. Heidingsfeld and C. Stachniss},
    title = {{Radar Velocity Transformer: Single-scan Moving Object Segmentation in Noisy Radar Point Clouds}},
    booktitle = icra,
    year = 2023,
    videourl = {https://youtu.be/dTDgzWIBgpE}
    }

  • I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley, and C. Stachniss, “KISS-ICP: In Defense of Point-to-Point ICP – Simple, Accurate, and Robust Registration If Done the Right Way,” IEEE Robotics and Automation Letters (RA-L), vol. 8, iss. 2, pp. 1-8, 2023. doi:10.1109/LRA.2023.3236571
    [BibTeX] [PDF] [Code] [Video]
    @article{vizzo2023ral,
    author = {Vizzo, Ignacio and Guadagnino, Tiziano and Mersch, Benedikt and Wiesmann, Louis and Behley, Jens and Stachniss, Cyrill},
    title = {{KISS-ICP: In Defense of Point-to-Point ICP -- Simple, Accurate, and Robust Registration If Done the Right Way}},
    journal = ral,
    pages = {1-8},
    doi = {10.1109/LRA.2023.3236571},
    volume = {8},
    number = {2},
    year = {2023},
    codeurl = {https://github.com/PRBonn/kiss-icp},
    videourl = {https://youtu.be/h71aGiD-uxU}
    }

2022

  • I. Vizzo, B. Mersch, R. Marcuzzi, L. Wiesmann, J. Behley, and C. Stachniss, “Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments,” IEEE Robotics and Automation Letters (RA-L), vol. 7, iss. 3, pp. 8534-8541, 2022. doi:10.1109/LRA.2022.3187255
    [BibTeX] [PDF] [Code] [Video]
    @article{vizzo2022ral,
    author = {I. Vizzo and B. Mersch and R. Marcuzzi and L. Wiesmann and J. Behley and C. Stachniss},
    title = {Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments},
    journal = ral,
    url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/vizzo2022ral-iros.pdf},
    codeurl = {https://github.com/PRBonn/make_it_dense},
    year = {2022},
    volume = {7},
    number = {3},
    pages = {8534-8541},
    doi = {10.1109/LRA.2022.3187255},
    videourl = {https://youtu.be/NVjURcArHn8},
    }

  • B. Mersch, X. Chen, I. Vizzo, L. Nunes, J. Behley, and C. Stachniss, “Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions,” IEEE Robotics and Automation Letters (RA-L), vol. 7, iss. 3, p. 7503–7510, 2022. doi:10.1109/LRA.2022.3183245
    [BibTeX] [PDF] [Code] [Video]
    @article{mersch2022ral,
    author = {B. Mersch and X. Chen and I. Vizzo and L. Nunes and J. Behley and C. Stachniss},
    title = {{Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions}},
    journal = ral,
    year = 2022,
    url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/mersch2022ral.pdf},
    volume = {7},
    number = {3},
    pages = {7503--7510},
    doi = {10.1109/LRA.2022.3183245},
    codeurl = {https://github.com/PRBonn/4DMOS},
    videourl = {https://youtu.be/5aWew6caPNQ},
    }

  • X. Chen, B. Mersch, L. Nunes, R. Marcuzzi, I. Vizzo, J. Behley, and C. Stachniss, “Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object Segmentation,” IEEE Robotics and Automation Letters (RA-L), vol. 7, iss. 3, pp. 6107-6114, 2022. doi:10.1109/LRA.2022.3166544
    [BibTeX] [PDF] [Code] [Video]
    @article{chen2022ral,
    author = {X. Chen and B. Mersch and L. Nunes and R. Marcuzzi and I. Vizzo and J. Behley and C. Stachniss},
    title = {{Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object Segmentation}},
    journal = ral,
    year = 2022,
    volume = 7,
    number = 3,
    pages = {6107-6114},
    url = {https://arxiv.org/pdf/2201.04501},
    issn = {2377-3766},
    doi = {10.1109/LRA.2022.3166544},
    codeurl = {https://github.com/PRBonn/auto-mos},
    videourl = {https://youtu.be/3V5RA1udL4c},
    }

2021

  • B. Mersch, X. Chen, J. Behley, and C. Stachniss, “Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks,” in Proc. of the Conf. on Robot Learning (CoRL), 2021.
    [BibTeX] [PDF] [Code] [Video]
    @InProceedings{mersch2021corl,
    author = {B. Mersch and X. Chen and J. Behley and C. Stachniss},
    title = {{Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks}},
    booktitle = corl,
    year = {2021},
    url = {https://www.ipb.uni-bonn.de/pdfs/mersch2021corl.pdf},
    codeurl = {https://github.com/PRBonn/point-cloud-prediction},
    videourl = {https://youtu.be/-pSZpPgFAso},
    }

  • B. Mersch, T. Höllen, K. Zhao, C. Stachniss, and R. Roscher, “Maneuver-based Trajectory Prediction for Self-driving Cars Using Spatio-temporal Convolutional Networks,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2021.
    [BibTeX] [PDF] [Video]
    @inproceedings{mersch2021iros,
    title = {{Maneuver-based Trajectory Prediction for Self-driving Cars Using Spatio-temporal Convolutional Networks}},
    author = {B. Mersch and T. H\"ollen and K. Zhao and C. Stachniss and R. Roscher},
    booktitle = iros,
    year = {2021},
    videourl = {https://youtu.be/5RRGWUn4qAw},
    url = {https://www.ipb.uni-bonn.de/pdfs/mersch2021iros.pdf}
    }

  • X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stachniss, “Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data,” IEEE Robotics and Automation Letters (RA-L), vol. 6, pp. 6529-6536, 2021. doi:10.1109/LRA.2021.3093567
    [BibTeX] [PDF] [Code] [Video]
    @article{chen2021ral,
    title={{Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data}},
    author={X. Chen and S. Li and B. Mersch and L. Wiesmann and J. Gall and J. Behley and C. Stachniss},
    year={2021},
    volume=6,
    issue=4,
    pages={6529-6536},
    journal=ral,
    url = {https://www.ipb.uni-bonn.de/pdfs/chen2021ral-iros.pdf},
    codeurl = {https://github.com/PRBonn/LiDAR-MOS},
    videourl = {https://youtu.be/NHvsYhk4dhw},
    doi = {10.1109/LRA.2021.3093567},
    issn = {2377-3766},
    }